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Viscous effects on fully coupled resonant-triad 
interactions: an analytical approach 

By X U E S O N G  W U  
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This paper is concerned with viscous effects on the development of a fully coupled 
resonant triad consisting of Rayleigh waves. Complementary to the numerical study 
of Lee (1995), we attack this problem analytically. The fully coupled amplitude 
equations are derived with all the kernels involved being expressed in closed forms. 
The amplitude equations are then solved numerically. It is found that viscosity reduces 
the growth of the disturbance in the parametric-resonance stage and delays the final 
occurrence of the finite-time singularity. But viscosity does not appear to be able to 
eliminate the singularity. While the analysis is performed for the temporally evolving 
instability waves, we demonstrate its broad application by showing that it can be 
slightly modified to obtain the amplitude equations for the spatially growing Rayleigh 
waves, and the equations which describe the development of the resonant-triad of 
Tollmien-Schlichting waves in the fully interactive stage. 

1. Introduction 
Resonant-triad interaction is an important mechanism which can operate in a 

variety of wave-flow motions. Of special interest is the so-called subharmonic resonant 
triad which consists of a fundamental two-dimensional wave and a pair of three- 
dimensional waves with subharmonic frequency. In particular, the subharmonic 
resonant-triad interaction of the Tollmien-Schlichting waves has been proposed by 
Raetz (1959) and Craik (1971) to be one of the mechanisms that induce rapid growth 
of the three-dimensional disturbances in laminar-turbulence transitions in boundary 
layers. Following the experimental observations of Kachanov & Levchenko (1984) 
and Saric & Thomas (1984), the role of subharmonic resonance in causing boundary 
layer transition has been generally accepted. For an introduction to background and 
earlier studies, the reader is referred to Craik (1985). 

The paper of Smith & Stewart (1987) represents the first attempt to put earlier 
studies on a completely asymptotic base by using a systematic high-Reynolds-number 
approach. They show that for Tollmien-Schlichting (TS) waves, the subharmonic 
resonance consisting of three nearly neutral modes can occur at some distance down- 
stream of lower branch of the neutral curve, i.e. in the so-called high-frequency 
limit of the lower-branch-scaling regime. The resonance condition is that the two 
subharmonic waves must travel at angles of f60" to the streamwise direction, as 
found earlier by Craik (1971) for the resonant triad of Rayleigh waves. Since 
resonant interactions are observed to take place near, or downstream of, the upper- 
branch of the neutral curve, Mankbadi, Wu & Lee (1993) and Wu (1993) studied 
the resonant triad in the upper-branch-scaling regime for the Blasius and for the 
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accelerating boundary layers respectively. They show that dominant nonlinear ef- 
fects come from the critical layers and the surrounding diffusion layers. This in 
turn casts some doubt on Smith & Stewart’s (1987) assumption that the critical 
layer is passive in their case (see also Khokhlov 1993). Jennings, Stewart & Wu 
(1995) are currently investigating this issue in detail. They find that the critical 
layer and the diffusion layers indeed play an active role. By taking the nonlin- 
earity associated with the critical layer and diffusion layer into account, they show 
that the interaction can occur at a lower amplitude than that in Smith & Stewart 
(1987). 

The evolution of a resonant triad consisting of slowly modulated Rayleigh insta- 
bility modes has been studied by Goldstein & Lee (1992) and Wu (1992) for the 
long-wavelength disturbance and for the order-one wavelength (nearly neutral) dis- 
turbance respectively. As is appropriate for Rayleigh waves, they fix their asymptotic 
scalings so that the critical layers involved are of non-equilibrium type, in contrast 
to the equilibrium, viscous-dominated critical layers in Mankbadi et al. (1993) and 
Wu (1993). In addition, by choosing suitable amplitudes for the disturbances, the 
development of the oblique modes is affected by the quadratic interaction, and at the 
same time the oblique modes produce a back effect on the planar mode. Because 
of this feature, Goldstein & Lee (1992) refer to this type of triad as ‘fully coupled’ 
or ‘fully interactive’. It is shown that nonlinear effects can cause a singularity within 
a finite time (or distance). However, this conclusion is obtained after viscosity is 
completely ignored. 

In the related context, the effects of viscosity on the development of disturbances 
are found to be rather subtle. For instance, a two-dimensional disturbance with 
a regular critical layer saturates in an oscillatory manner if viscosity is neglected 
(Goldstein & Leib 1988). But when viscosity is included, the disturbance grows 
algebraically no matter how small the viscosity is (Goldstein & Hultgren 1989). For 
a pair of oblique modes, Wu, Lee & Cowley (1993) show that while the disturbance 
develops a finite-time singularity in the purely inviscid case (Goldstein & Choi 1989), 
it can decay exponentially when viscosity is sufficiently large. 

The viscous effect on the development of the fully coupled resonant triad was first 
investigated by Lee (1995), who solved the appropriate partial differential equations 
governing the flow in the critical layer numerically. In this paper, however, we shall 
attack this problem analytically. As well as being complementary to the numerical 
study of Lee (1995), our present undertaking is also desirable in view of the wide 
application of the results. The final amplitude equations apply to a broad class of 
shear flows which can support Rayleigh instability waves (e.g. free shear layers); 
the kernels are calculated once and for all for these flows. Moreover, Goldstein 
(1994) recently has observed that for the resonant triad of TS waves, the parametric 
resonance can lead to a stage at which the critical layer can become both of viscous 
and non-equilibrium type. He also shows that by choosing the appropriate initial 
magnitude for oblique waves, the interaction can become fully coupled. This is in 
contrast to the viscous-dominated equilibrium critical layer regime of Mankbadi et 
al. (1993) where the interaction is not fully coupled in that the subharmonics have no 
back effect on the planar mode. Goldstein (1994) showed that the analytical results 
obtained in this paper would be applicable to the development of the resonant triad 
of the TS waves (see 55.2 below). 

The paper is organized as follows. In the next section, we formulate the problem 
using the Stokes oscillatory layer as an example. The solution in the main part of the 
flow is then considered. Because this part of the analysis, to the order of interest of 
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this study, is exactly the same as in the inviscid case (Wu 1992), we shall only outline 
the main results. In 93, the flow within the viscous, non-equilibrium critical layers 
is analysed. The solutions are found analytically. Matching them onto those in the 
outer region, we obtain the coupled amplitude equations (94). The kernels involved 
are expressed in closed forms. In $5, by a minor modification of our analysis, we 
derive the amplitude equations for the resonant triad of Rayleigh waves in spatially 
developing shear layers as well as for the resonant triad of Tollmien-Schlichting waves 
in the Blasius boundary layer. In $6, we solve the amplitude equations numerically, 
and discuss the results. 

2. Formulation and outer expansions 
As in Wu (1992), the flow is described in terms of Cartesian coordinates (XI, y*, z*) = 

6*(x,y,z), where X' is parallel to the direction of oscillation of the plate, y' is normal 
to the plate and Z* is the spanwise direction. We non-dimensionalize time with w-', i.e. 
z = a t * ,  and write the velocity as UO( U ,  V ,  W ) ,  where w and UO are the dimensional 
oscillation frequency and the maximum velocity of the plate, and 6' = (2v/0)'/~ 
represents the thickness of the Stokes layer. The pressure is non-dimensionalized by 
poU& where po is the density of the fluid. The Reynolds number based on UO and 6' 
is R = U0(2/vw)'/~, where v is the kinematic viscosity. The analysis actually applies 
to any almost parallel, inviscidly unstable flow ( U ,  R-' V ,  0). However, for purposes 
of illustration we will substitute at appropriate points the Stokes-layer solution for 
the flow over an oscillating plate: 

( U ,  R-' V ,  0) = (cos(z - y)eCY, 0,O) . 

We denote the velocity of the perturbed flow by 

( U ,  V ,  W )  = ( U  + U ,  R-'V + U, W )  . 

The disturbance consists of a fundamental planar mode with a magnitude 6 and a 
pair of subharmonic oblique modes with a magnitude E = O(d3l4) (see below). For 
simplicity, we shall assume that the two oblique modes are of equal amplitude. In 
principle, it is straightforward to extend the analysis to unequal amplitudes. However, 
the asymmetry in the amplitudes would complicate the algebra considerably. 

As usual in weakly nonlinear theory, we assume that nonlinear effects first come 
into play when the disturbance is nearly neutral, say near a neutral time 70. As 
explained in detail by Wu (1992), it is appropriate to concentrate on times close to 

= z0 + , 

for some suitable z1 = 0(1), i.e. times at which the linear growth rate is O ( E ' / ~ R ) .  As 
in Wu (1992), we introduce the time scales 

ti = ~ E ' / ~ R T  , (2.1) 

and 

t = Rz (2.2) 
to account for the nonlinear development and the carrier wave frequency of the 
disturbance, respectively. The basic-flow velocity 0 evolves on the very slow time 
scale z, and it is sufficient to express its profile at time z as a Taylor series about the 
neutral time zo : 

U(y, z) = U(y, 70) + U h ,  zo)z1 + ... . 
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In order to investigate the viscous effects, we consider the distinguished case where 

viscous diffusion terms appear at leading order in the critical-layer equations. This 
occurs when 

R-' = l e  , (2.3) 
where the parameter 1 characterizes the relative importance of viscous to unsteady 
inertial effects, and thus to nonlinear effects (cf. Haberman 1972). Throughout @24,  
,I will be assumed to be of order one. 

Outside the critical layers, the unsteady flow is basically linear and inviscid. The 
expansion for the velocity (u,u, w) and the pressure p of the disturbance is the same 
as in Wu (1992), namely 

u = fu l  + e4l3u2 + e5/3U3 + . . . , 
u = E U ~  + e4l3u2 + e5/3u3 + . . . , 

w = E W ~  + d 3 w 2  + PW3 + . . . , 
P = epl + c413p2 + e5/3p3 + ... . 

Guided by the 'early time' linear solution, we seek the solution of the form 

~1 = A(tl)Bl(y) cos PzE + C.C. , (2.8) 

where A(t1) is the amplitude function of the oblique waves, and U1 is the eigenfunction 
of Rayleigh's equation. For convenience, we have defined 

where o! and p are the imposed streamwise and spanwise wavenumbers; in the case of 
a steady non-parallel shear layer, the form of the solution has to be changed slightly 
so that the frequency and spanwise wavenumber are imposed. The condition for the 
disturbance to form a subharmonic resonant triad is (see e.g. Craik 1971; Goldstein 
& Lee 1992; Wu 1992) 

p = & .  (2.10) 

Let q = y - yf, where yf is the jth critical level, i.e. U(yf) = c ;  then as q + k0, 

(2.11) 

p .  - ~ U Y Y  , q j  = ;$+ -v 1 U Y Y ,  - - " Y  

J -  u, 2 u, Uf , 

and 12 = (a2 + p2)l12. From here up to $4, all basic-flow quantities, such as uy, uyy, 
u,, etc., are evaluated at the time 70 and at the critical level yf; the subscripts denote 
the partial derivatives with respect to the variables indicated. 

The leading-order solutions for ul, w1 and p1 take the following form: 

~1 = A(ti)ai(y)E cos PZ + Uy'(y,  t i )  cos 2pz + C.C. , 

w1 = A(tl)Wl(y)E sin pz + C.C. , 

p1 = A(tl)fil(Y)E cos pz  + C.C. , 
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where as first noted by Goldstein & Choi (1989), a spanwise-dependent mean-flow 
distortion must be included in u1 (and also in (2.12) below). The reason for this was 
further explained in Wu (1992) and Wu et al. (1993). We find that as y -+ +O, 

zil -+ +a)-' sin2 ebfy-l + . . . , w1 -+ 8-' sin ebfy- l+  . . . , 

p1 -+ti-lUgCOSeb:+... , 
where have defined 

e = tan-' P / a  . 
The O(e413) term in (2.5), v2, has the form 

~2 = B(t1)42(y)E2 + D2(y, ti) cos PzE + U ( ' , ~ ) ( Y ,  ti) cos PZ + C.C. + . . . , (2.12) 

where B42E2 is the fundamental planar mode with the scaled amplitude function 
B(t1). The function 4 2  satisfies Rayleighs equation. Because it is assumed that 2a = ti, 
we have 

4 2  = D' . (2.13) 
The function 52 satisfies an inhomogeneous Rayleigh equation. As y -+ *O, 

~2 -+ -$rj log lq l+ (+j + bfsj)q log lq l+ . . . + c,i.+a + $ [ 4 b  + p j 4 a  log lyll , 

where 

The solvability for f i2  leads to 

-pj(bfdT - b;d;) - (a+& J J  - a:&) J J ]  , (2.14) 

where the sum is over all critical layers, J1 and J2 are constants whose definitions can 
be found in Wu (1992). 

At O(e513) (see (2.5)), it is sufficient to solve for the deviation of the planar wave 
eigenfunction from its neutral state; hence we write 

(2.15) 03 = 4 3 ( y ,  tl)E2 + C.C. + . . . . 
The function 43 satisfies an inhomogeneous Rayleigh equation, and as y -+ +O, 

+ 
4 3  -+ - b i ~ j  log 171 + (a:Rj + b:sj)q log lq l+.  . . + c;+a + ~ f [ 4 h  + p j 4 a  log lqll , 

where the expressions for Rj and S, are the same as for r j  and s j  provided that a and 
A are replaced by 2a and B respectively. The solvability condition for 43 gives 

-pj(bfDf - b:D:) J J  - (afDf - a;Di)] . (2.16) 
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The details of derivation of (2.14) and (2.16) can be found in Wu (1992). The 
amplitude equations will follow from (2.14) and (2.16) after the jumps (u; - a:), etc. 
are determined in the next section. The reader who is not particularly interested in 
the algebraic details can omit the following section at a first reading. 

3. Inner expansion 
Within the j th critical layer, the appropriate local transverse coordinate is 

Y = r / f1/3 , 

u = c ~ / ~ u ~  + e 3 / 3 ~ 2  + e4l3u3 + +e5I3u4 + . . . , 
u = e3I3V1 + e4l3 V2 + E ~ / ~ V ~  + f6l3 V4 + + . . . , 
w = c ~ / ~ W ~  + E ~ / ~ W ~  + E ~ / ~ W ~  + e5l3U4 + +... , 
p = e 3 / 3 ~ 1  + e4I3p2 + J 3 p 3  + . . . . 

and the expansion takes the following form 

(3.1) 
(3.2) 
(3.3) 
(3.4) 

The solutions for V1 and P1 are just a trivial continuation of the outer expansion, 

(3.5) 

namely 

V I  = A^(tl)E cos pz + C.C. , P1 = i2-l U ,  cos OLE cos pz + C.C. , 

where a = bjA, and b: = bT = bj.  
Let W1 = @1E sinpz + c.c.; then it follows from the z-momentum equation that 

L t )  VV1 = iU, sin 0 cos eA , (3-6) 

where 

We solve (3.6) using Fourier transforms, and obtain 

&'l = iU, sin ecos &$)) , 

where we have defined 
+m 

&'ifl) = 1 <"J(tl -5)e-'t5'-'"5d< , (3.9) 

and 
D = a(U,Y + UJ,) , s = 1Aa2u; 3 . (3.10) 

The leading-order streamwise velocity U1 can be written as U1 = 0 1 E  cos pz + C.C. It 
follows from the continuity equation that 

G1 = - U ,  sin2 ow$)) . (3.11) 

p2 = iia-l u,fi~2 + i ; 2 ( 2 ' ' ) ~  cos pz + C.C. , (3.12) 

where the first term on the right-hand side is the pressure associated with the planar 
mode; the second term will not be needed in the following analysis. 

At O(f4l3), the pressure P2 has the solution 

The vertical velocity at O(e4i3), V2, satisfies 

a as11 
LOV2,YY = LlVl+ - [- + $1 , ay ax 

(3.13) 
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where 

(3.14) 

(3.15) 
a 2  a 

L1 = - { ( iu,yy2 + U y T T l  y + i u T T T T ) $  + A&} s + u y y z  

The Reynolds stresses, S11 and S31, are found to be 

S11 = S,(y) + Si?' cos 2Pz + Si:,0)E2 + S, (Y)E2  cos 2Pz + C.C. , 
S31 = s;?) sin 2 ~ z  + S:?)E~ sin 2pz + C.C.  , 

(3.16) 

(3.17) 

where 

Sll (W) = $ , ~ 2  2 Y sin2 ekwf) , (3.18) 

s,(fo) = iia V$ sin2 e [A F ? f )  + 2 sin2 e F??) F?,9 , (3.20) 

~,(:,2) = i iau$ 2 sin2 ,ga@il) (3.21) 

,$?) = i ~ u ;  cos2 e[a* wJ1) + 2 sin2 &,jO)@;(o)] (3.22) 

siT.2) = p; cos2 eJw,f) . (3.23) 

sI(pI'Z) = j.iau2 2 Y  sin2 ek , (3.19) 

Equations (3.13), (3.16) and (3.17) indicate that V2 has a solution of the form 

V2 = PY'E cos PZ + Py' cos 2Pz + P!j&O)E2 + C.C. (3.24) 

The component f y )  is driven by the linear forcing term, i.e. LIVl = iauyya, which 
is exactly the same as in the two-dimensional case (e.g. see Wu 1991; Wu & Cowley 
1994). By analogy, we obtain the jump conditions 

a; - a; = nipjbjsgn( 0,) , 
d; - d; = -nirjbjsgn( 0,) . 

(3.25) 

(3.26) 

where we have put 

s = xu,. 

The solutions are as follows: 

Pp:? = --is3 s i n 2 0 i + ~ + ~ Z i o , 2 ) ( ( ,  q)a*( t l  -,)a(t1 -q-()e-i"5dcdq , 

P(2,0) 2,YY - - is3 sin'oi 1 Zi2,')((, q)A(t l  -q)A(tl -q-()e-i"(5+2q)d5dq , 

(3.29) 
+m +m 

(3.30) 
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where 

(3.31) 

where 

The solution for W2 has the form 
F,(Y) = iU,,Y2+ U,,ZlY + ; U T 7 Z ;  . 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

w2 = @J')E sin pz + FVP) sin 2pz + @i2,2)~2 sin 2pz + C.C. (3.37) 

As in Wu (1992), for the urpose of deriving the amplitude equations it is sufficient 
to solve for ,2) only. The solution for i@(o,2) follows from the continuity 
equation, namely 

(3.38) 

The function @i2,2) satisfies 

which is solved to give 

P 

-(2P)- V2,P . @P) = 

Lo ^(2)  w2 * (232) = 4 ( 2 > 2 )  31 9 (3.39) 

and 

1 ^(02) 

The O(e) streamwise velocity U2 (see (3.1)) satisfies 

where 

The solution takes the form 
F1(Y) = U,,Y + Uy7Z1 . (3.42) 

Uz = Of)E cos BZ + Oy) + Oy) cos 2pz + O y ) E 2  + U2 ^(22)  ' E 2 cos 2pz + C.C. (3.43) 

fiy, = -(2ia)-1 V2,P ^(20)  7 = ipa-l @i2>2) (3.44) 

From the continuity equation, we obtain 

The mean-flow distortions Oy) and fiy) are governed by the following equations 
respectively : 
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where Sly) is defined by (3.19). The solutions are 

385 

(3.47) 

(3.48) 

where we have put 

We now seek the solution for V3 ; this is found to satisfy 

where L1 is defined by (3.15), and 

L2 = - [ i  U,,,Y 3 + U y y r Z 1  Y + UyrrZ:Y + ; UrrzZ3 & 

The Reynolds stresses S12 and S32 contain different components, among which only 
those proportional to E cos f l z  and E3 cos pz will be needed later. Therefore we write 

, 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 
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fi = -iaP:T;"'y - pal$$:$) + 8p2@1 fif'2) + 4p@1 PF? - 2pji/;,y Pp' . (3.60) 

Here the forcing terms which do not contribute to the jumps have not been included. 
Equations (3.50) and (3.58) suggest that V3 has the solution 

V3 = P3E cos pz + V3E3 cos p z  + P F ) E 2  + C.C. + . . . , (3.61) 

where the component proportional to E cos 3pz has been omitted since it will not 
be used in deriving the evolution equations. As will be shown below, matching the 
solution P3 will determine (c; - cy). 

The relevant part of the linear forcing term in (3.50), i.e. (L1 V2 + L2V1), is found to 
be the same as F(') Y, t1)E in Wu & Cowley (1994). Thus the solution forced by it, 
denoted here by V(: 4 E ,  has the same asymptotic behaviour: 

$ ( I )  3,y - + 24jbj + ;$bj)Y + (afrj + pjd; + sjbj) log I Y I 
+{++isgn( Uy)(afrj + pjd; + sibj) + . . .> . (3.62) 

Let Pr) denote the solution driven by (see (3.50) and (3.58)), i.e. 

Lo "(1) V 3 , y y  " ( a )  = M Y  3 (3.63) 

where is defined by (3.7); then 

A (4 (3.64) 

We note that because of the form of M y ,  it is very inconvenient to solve Pg& 
from (3.63) directly. Moreover, the forp of the solution so obtained does not let us 
evaluate the asymptotic behaviour of V t i  in a straightforward manner. In order to 
overcome this technical difficulty, we write 

Pr&"?, = Q " ( ~ , t l )  -iaU;1~1,yyt7;(o,z) + U;lOi,yyPF? . (3.65) 

The same method was p e d  in Wu et al. (1993), and a similar procedure will be 
ysed in solving for V3, W3, and @3 later. Substituting (3.65) into (3.63), we find that 
Qu( Y, t l )  satisfies 

Lo A (1) Qv A = A"(Y,ti) , (3.66) 
where 

We note that 

and 

Making use of (3.67), (3.68) and the complex conjugate of (3.46), we find that 

" (0 
P , Y  Y = q,,, + V 3 , y y  * 

A, = M y  +icrU;'tt)(6l,yyU2' ^(02) ) - U, --l"(1) L, ( (j* 1 ,YY~2 , t  "(20) . 

L, "(1) U l , y y  A = -2iaDyfi1,y , (3.67) 

(3.68) Lo (2) V2,Y "(2,O) = -2iaUyi + 2i& Y 2  P(2,O) + 2iaS,'?' . 

Mu = 2iai  @ y  + i a a @ s  + ;iaAU2,;, " "*(O2) + ;PA A W2,y'y " *(O2) 

+iaO,,y P;$2)-2a2iT1 Oi;y)-2i~aU;~ O l , y y y  ii;fy' - iaU;' fil,yy$y) 
-2iaU;' t j ; , yy~, ' : .O)  + ~ A U ; ~ O ~ , ~ ~ ~  PF;: , (3.69) 

where S,'?) and S,(?) are defined by (3.19) and (3.20) respectively. After solving for 
Qu( Y, t l )  from (3.66) using Fourier transforms, we obtain 

Q" = P g ,  + P g y  , (3.70) 
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where 

x A(t l -~)A(t l -<-q)A*(t l -c  -q-<)dtdqd[ . (3.72) 

The kernel kv(t, q,  5) is quite complicated and is given in Appendix A. Matching $ 3 , ~  

with the outer expansion, we find that 

cl' - cy = P,y(+Co) - P,y(-Co) . (3.73) 

After making use of (3.62), (3.64), (3.65), (3.70)-(3.73), we obtain 

c; - cy = nisgn( Uy)(u;rj  + pjd; + sibj) 

(3.74) 

where the kernel function K ,  was first derived by Wu et al. (1993) for an arbitrary 
obliqueness angle 8, but for completeness we reproduce it in Appendix B. Although 
the kernel K , ( t ,  q )  is algebraically complicated, it simplifies to the following form 
when ,I = 0 (cf. Wu et al. 1993; Wu 1992): 

K,(t ,  q )  = - 3 ( 4 t 2  + 55q + 3q2) f (3.75) 

So far we have obtained the necessary jumps to derive the amplitude equation for 
the oblique waves. To derive the amplitude equation for the planar wave, we need to 
seek the jumps (Df - D;) and (C; - C;). The jump (0; - D;) can be obtained by 
solving for P',".") (see (3.61)); this satisfies the equation 

(3.76) 

After solving for 
obtain 

and matching P',".") with the appropriate outer solution, we 

D? -DT I = -niR.b.s 1 1 g n (VY). (3.77) I 

The remaining jump condition to be determined is (CT - CF). This can be obtained 
by solving for V4 (see (3.2)). To this end, we first need to know the harmonic 
component f73 and W,. 

The harmonic component f73 is governed by 

Lo ^(3) V3,YY - = M Y  9 (3.78) 

is defined by (3.60). As for ?tiy (see (3.65)), to aid the calculation of the where 
asymptotic behaviour, we write 

V 3 , y y  = (lu + ips-' Py;' . (3.79) 
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We find that satisfies 

^(3)  - Lo Q v  = M u  , (3.80) 

where 

Solving (3.80), we obtain 

Qv = v g y  + v g y  , (3.82) 

where 

+a, +m +"om 

vfiY = s4 sin201 1 1 K O ( [ ,  q ,  [)e-ia(t+2"+3i) 

X a(t1 -[)a(tl-[-q)A^(tl-[-q-[)d[dqd[ . (3.84) 

The function for q,  [) is given in Appendix A. 
We now seek the solution for W3. This term satisfies 

(3.85) 

where 

F3(Y) = $7,,,Y3 + U,,,qY2 + UyzrZ:Y + p z 7 * T ;  . 
We write 

~3 = @ 3 ~  sin ~z + I V ~ E ~  sin PZ + C.C. + . . . , (3.86) 

where the components irrelevant to the generation of the two-dimensional fundamen- 
tal at the next order have not been included. We further note that the solution driven 
by the first three terms on the right-hand side of (3.85) does not contribute to the 
jump (CT - C?). So we shall concentrate on the solution driven by -S32, i.e. it is 
sufficient to solve for @3 which satisfies 

y@ 3 - - -s32 (1J) > (3.87) 

where S$'" is defined by (3.56). Following a similar procedure to that for solving p3, 
we write 

(3.88) 1 .S-l@* Q(2,O) - 1 - 1 A A *(0,2) 
@3 = Qw + 21 l,y 2,y zu; W1,Y u2 * 

L, A(l)A ew = -BW;, - [;~@:(,0-2) + i a e 1  o * ( O , O )  - 1 fi1 @;(0,2) 

+ [ q l  w* S(2,O) + AiS-1 w* 1,YY p(2,O) 2 , Y Y l  

The function Qw satisfies 
A A  

1 2 , ~  i 

l , Y  11 

+[-wl@l,ysy) 2 Y  - Au;l@l,yyo;yq . (3.89) 

We find 
Q w -  - @(b)+@!), (3.90) 
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where 

*?) = -ip-'S3 sin20 l+x+ja+>w(<, y, c)e-i'([<) 

x a( tl -[)a(t, -[ -y)A^*( tl -c -y  -t)dtdyd[ , (3.92) 

and the kernel kw(<, y, [) is given in Appendix A. 
The harmonic component @3 (see (3.86)) satisfies the equation 

Lo "(3) w3 - = -sp , (3.93) 

where is defined by (3.57). The solution can be written as 

(3.94) 

We find that 

where 

Q - @;(b)+ @f) 
w -  7 (3.96) 

fit) = -ip-'S3 sin20 Jc+l+l+>w(<, y, [)e-'"(5+2*30 

x Â( tl -[)a( tl -[ -y)& tl -c - y - <)dtdyd( , (3.98) 

and the kernel kw(<, y, [) is given in Appendix A. 
The streamwise velocity at O(e4I3) takes the form 

U3 = G3E cos PZ + U3E3 cos PZ + C.C. + . . . . (3.99) 

It follows from the continuity equation that 

(3.100) 
(3.101) 

We are now in a position to solve for V4 (see (3.2)) to determine (C; - C;). To this 

(3.102) 

end, it suffices to seek only the two-dimensional fundamental component in V4, i.e. 

V4 = PY)E2  + C.C. + . . . . 
The function Pk2,o) satisfies the following equation: 

, (3.103) 

where again forcing terms which do contribute the jump (C; - C;) have been ignored. 

(2) (290) - i ( 2 )  P(2,O) + p py' + & + . . . 
Lo V 4 , Y Y  - 1 3 
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The nonlinear forcing term & is given in Appendix C-f, and 

1 a 
+2ia[U,,,Y + UyyTzl] + 4a2 - + 2 i a ( U , ~  + Utzl) . 

[ a t ,  

Let Py) and Pt) denote the solutions driven by (iy'py) + iy'py') and by & 
respectively. Following a similar procedure to that for the two-dimensional case (Wu 
1991), we find 

(3.104) Pf,\(+cc) - V4,y(-cc) A ( 1 )  = nisgn(U,)(afRj +pjDf + bjS,) , 

where the definitions for p i ,  Rj and S j  are stated in $2. 
The solution for ?tiy can be written as 

= Q4 + @'yy , (3.105) 

where 

It follows from the expansion of the x-momentum and continuity equations that 

Using the above relations and (3.68), we find that Q 4  satisfies 

Lo A (2) Q 4  = N(b) + N'" , (3.109) 

where the functions N(b)  and N(') are defined in Appendix C. 
In our opinion, the subtraction of t$'yy from Vt ' ,  and similar subtractions in 

solving for pFiy and v3,yy (see (3.65) and (3.79)), etc. are a crucial step to circumvent 
the difficulty of calculating the asymptotic behaviour of Pt'.  This technique simply 
makes use of certain features of the critical-layer equations, e.g. (3.46), (3.67) and 
(3.68). Since these equations are generic, the technique identified here could be useful 
for other related critical-layer analyses. 

Let P f )  and pf) denote the solutions driven by N(') and N@) respectively, i.e. 

Lo h , Y Y  - 9 4 , Y Y  - 9 (3.110) ^(2) - N(b) '@)P(r) - N(r) . 

then 

P,,, = PY,tY + + ?thy + . (3.1 11) 

t Appendix C is available from the author or the JFM Editorial Office. 
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Matching P,, with the appropriate outer expansion, we find 

c+ I - c; = P4,,(+m) - P,,(-m) . (3.112) 

We note that if rcb)(k) and r@)(k) are the Fourier transform of Pt;, and Pt; ,  
respectively, i.e. 

then 

P~;(+cc) - P4,y(--00)(~) = rcb)(0) , P~'(+co) - P~,Y(--co)(~) = rcr)(0) . (3.113) 

It is straightforward, though lengthy, to solve for r(:) and rcr) by Fourier trans- 
forming (3.110). The jump associated with @ b y ,  i.e. [V&(+co) - V4,y(-m)(s)], can 
be obtained directly from (3.106) by integration by parts. After a tedious calculation, 
we obtain 

C+ J - C- J = nisgn( DY)(afRi + p j ~ f  + bjs j )  

+m +m 

+is4jO sin2 6 1  1 K22( 5 ,  q)& tl -5)A( tl - 5 ---q)A*( tl -35 -q)dSdq 

+m +m +m 

+2is5 sin26j01 1 1 Kb(5, q,  c)A(tl-c)A(tl-c-q) 

x A( ti -c -q -<)A*( ti - 3c -211 - t)d(dqdc , (3.114) 

where j o  = nlsl-'. The kernels K21, K22 and Kb(<,q,c) are rather complicated and 
are relegated to Appendices B and D. But in the inviscid limit (A = 0), they revert to 
(cf. Wu 1992) 

K21 = 45(5 + + q )  , K22 = f3t3 , (3.115) 

Kb(t,q,c) = k[-3c4 - 4(5+2q)c3 - (352+5q+2q2)c2 + (X2+55q+4q2)qC] . (3.116) 

4. Evolution equations for the amplitudes 
4.1. Coupled amplitude equations 

Substituting the jumps (3.25), (3.26) and (3.74) into (2.14), we obtain the following 
amplitude equation for the oblique waves: 

where we have written IC, = fozl/f, and glk = f l k / f  ( k  = 1,2). The constants f and f o  
have the same expressions as in the inviscid case (Wu 1992) and will not be repeated 
here. The constants f l l  and f12 are 

f l l  = -4nia2sin26bj1bi12U,1UY1 , f12 = --71a3 sin2~b~lbj\21DY13 . ( 4 4  
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The kernel Ka(<,q) is given by (B 1). Equation (4.1) and the first expression in (4.2) 
indicate that for the resonant triad of sinuous modes in a symmetric shear flow (e.g. 
in a plane wake), the quadratic term vanishes because the contribution from each 
critical layer cancels each other. 

Similarly, substitution of (3.25), (3.77) and (3.114) into (2.16) gives the amplitude 
equation for the planar wave, namely 

x A(ti - i -V  -<)A* ( t i  - 31 -211 - 5)dCdqdi , (4.3) 

where we have written xb = 2fozl/f, g2k = 2f2k/f ( k  = 1,2), and 
f21 = --Z71a3 1 sin2~b:lbj12~U,13 , f22 = -2.nia4sin28b:lbj12~~l),l . (4.4) 

The kernel Kb(<,q,i) is defined by (D 1) in Appendix D. 

the 'initial' conditions (see e.g. Goldstein & Leib 1988) 
In order to match to the earlier linear stage, the amplitudes A and B must have 

A + AOeKut' , B -+ BOeKbfl as t l  + -a . (4.5) 

= Kbr t l  - t o  , 2 = r?/Kir , (4.6) 

(4.7) 

We now rescale the amplitude equations by introducing the following variables: 

I C gll I /Ktr  9 
A = Ae-i(TA+Kbttl)/Z I C g1211/2/lA , B = Be-i(TB+Kbitl) 

where Kbr and Kbi are the real and imaginary parts of Kb. The constants to, TA, TB 
and lA are all real, and are chosen to satisfy 

e iTB !cbr / l  4 C g l l l  = Boeto , eiTAiA/I Cg1211/2 = AOeKtO , Ic = (Ic, - Tiicbi)/Kbr 1 .  . 

The rescaled amplitude equations and the initial conditions then become 

x A(T-1 -q --5)A'(t-31-211 -<)d<dqdi , (4.9) 

A + e K t ,  B + e '  as t + - a ,  (4.10) 
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where 

yo = a r g [ ~ i / ~ o I  + xi . (4.12) 
In rescahg, we have also made the substitution: K b r t  -+ <, x b r q  -+ q,  K b r r  + r. The 
kernel functions remain unchanged except that 1 is replaced by 2, but for convenience 
we still write 2 as A without losing generality. The real parameters yo and xo account 
for the effects of the initial phase difference and the relative amplitude of the planar 
and the oblique modes respectively. 

4.2. Eflect of initial amplitudes and parametric resonance 
The coupled amplitude equations (4.8) and (4.9) are formally derived when 

f = O(6314) . (4.13) 

If 6 << 0(63/4), i.e. 1x01 << 1, then they reduce to 

- _  - B .  dB 
dT 

(4.14) 

(4.15) 

These are the evolution equations describing the parametric resonance, in which the 
oblique modes have no back reaction on the planar mode. Equations (4.14) and 
(4.15) were first derived by Wundrow, Hultgren & Goldstein (1994). (The inviscid 
version of (4.14) was first derived by Goldstein & Lee 1992). We note that provided 
6 >, O [ ( ~ C ~ ) ~ ]  >> E ~ / ~ ,  the parametric resonance occurs even when the magnitude of 
the oblique modes is infinitesimal. Parametric resonance effect is negligible when 
6 << As shown by Goldstein & Lee (1992), in the parametric-resonance 
regime the three-dimensional waves experience a super-exponential growth, while the 
two-dimensional wave continues to grow exponentially. Depending on the initial 
magnitude of the oblique modes and the nature of the critical layers, the subsequent 
stage which follows the parametric resonance can take different forms. If the initial 
oblique modes are ‘algebraically’ small, their magnitude will quickly increase to 
O(S3I4) due to the super-exponential growth, and the evolution soon enters the regime 
described by the fully coupled equations (4.8) and (4.9); in this case the fully coupled 
equations are uniformly valid in the two regimes. Therefore the validity of (4.8) and 
(4.9) is much larger than that specified by (4.13). However, if the oblique modes are 
‘exponentially’ small, Wundrow et al. (1994) show that the planar mode can become 
nonlinear (described by the strongly nonlinear critical layer equations, cf. Goldstein, 
Durbin & Leib 1987) before the oblique modes can produce a feedback effect on it. 
The oblique modes in this stage evolve over a faster time (or spatial) scale. Finally 
the disturbance enters a fully interactive stage with both the planar and oblique 
modes evolving over an inviscid time scale. While Wundrow et al. (1994) drew this 
conclusion for the resonant triad of long-wavelength Rayleigh modes, it is also true 
for the resonant triad of O( 1)-wavelength Rayleigh modes in flows with regular critical 
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layers. However, if the critical layer is singular, following the parametric resonance is 
the stage at which the development of the planar mode is governed by an evolution 
equation of Hickernell (1984) type. Because in this case the amplitude of the plane 
mode can either develop a finite singularity or equilibrate, the subsequent stage could 
be different from that of Wundrow et al. (1994). This issue may deserve further 
investigation. 

5. Applications 
Although the analysis in @3,4 is performed for the Rayleigh instability waves 

evolving in time, the final amplitude equations also apply to Rayleigh waves which 
evolve spatially in the streamwise direction. Moreover, after dropping the linear terms 
the amplitude equations also describe the fully coupled stage of a resonant triad of 
TS waves identified by Goldstein (1994). In both cases, to obtain the coefficients only 
a minor modification to the outer analysis is needed. The jump across the critical 
layer can be borrowed directly from 93 if we define the slow streamwise variable 
carefully. In the following, we demonstrate this using a mixing layer and the Blasius 
boundary layer as examples. 

5.1. Mixing layer: spatial development of resonant triad of Rayleigh modes 
A mixing layer, which forms between two streams of different velocities U(l) and 
can support Rayleigh modes with wavelength comparable to its local thickness, say 6'. 
We adopt the standard non-dimensionalization based on 6' and a reference velocity 
VO = (U( ' )  - U(2)) /2 .  The Reynolds number is R = U06*/v. For the disturbance 
in form of a subharmonic resonant triad, it follows from the Squire transform that 
all three waves involved become neutral at the same streamwise location. The fully 
interactive resonance occurs at an O(e1l3R) distance upstream of the neutral position 
so that the local frequencies of the waves deviate from the corresponding neutral 
values by where E is the magnitude of the oblique modes. Therefore in the 
main part of the shear layer, the vertical velocity of the disturbance can be written 
as 

v = c4(xl)fileiaX cos BZ + E ~ / ~ [ B ( x ~ ) ~ ~ ~ ~ $ ~  + ij2eiax cos pz + . . .I 
f C 5 / 3  [$2e2iaX + ...I + C.C. + ... , (5.1) 

where 8' = &, and X = x - (Uc + ~ ' / ~ 9 ) t  with Uc = c being the phase speed of 
the neutral modes. The slow variable describing the streamwise development of the 
disturbance is defined by 

where we have introduced a factor U ; l  so that we can make use of the jump 
conditions obtained in 93 directly without going through a detailed analysis. 

The eigenfunction 8' satisfies Rayleighs equation. For the mixing layer, the critical 
level y ,  coincides with the inflexion point so that U: = 0. As q = y - ye + +O, 

where UA and Ur represent the first and third derivatives (with respect to y )  of the 
basic flow at the critical level. The constant a = i j i (O) ,  but its value is not needed in 
the following. 
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The functions ti2 and $2 are governed by inhomogeneous Rayleigh equations, and 
as q + +O, 

The solvability conditions for i& and $2 lead to 

where 
+, u a :  d y .  

J2 = 1, ( U  - c)2 (5.5) 

Within the critical layer, the solution takes the form (3.1)-(3.4). The critical layer 
operator is 

which is the same as (3.7) if we identify x1 with tl ,  and 3 with Moreover, the 
relevant nonlinear forcing terms that contribute to the jumps are the same as those 
in $3. Therefore, we conclude that the nonlinear parts in the jumps (c+ - c-) and 
(C+ - C-) are exactly the same as those in (3.74) and (3.114) with bj  being taken as 
unity, while the linear parts are replaced by 

respectively; they correspond to the phase shift of n at the logarithmic branch 
point. Substituting the jumps so obtained into (5.3) and (5.4), we arrive at the same 
amplitude equations as (4.1) and (4.3) provided tl is interpreted as XI,  of course. The 
coefficients are now given by 

(5.6) 
2 - 1  - 

K ,  = f&/f l  , gll = 4nia U,lU;l sin26/fl , gI2 = na31U:l3 sin26/fl , 

Note that the expressions for the coefficients are valid for shear flows with any 
profile. In general, they must be evaluated numerically by solving the (homogeneous) 
Rayleigh equation. However, for the shear flow with the profile U = tanhy, we have 
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In passing, we note that the temporal development of a resonant triad on such a 
profile was considered by Mallier & Maslowe (1994) in the inviscid limit. Substitution 
of (5.8) into (5.6) and (5.7) gives 

K ,  = ii(1- iix)-'$ , gll  = -Li( l -  16 1. 2ix)-1 , g12 = -&(I - ;ix)-l , (5.9) 

K b  = i(1- 2ix)-'3 , g21 = - -&(I  - 2ixl-l , g22 = -&i(1- 2ix)-' , (5.10) 

where x = l/nUc. 

5.2. Resonant triad of TS waves in the Blasius boundary layer 
A resonant triad consisting of TS waves in the upper-branch scaling regime was 
studied by Mankbadi et al. (1993). The dominant interactions are found to take 
place in the critical layer. But in contrast to the resonant triad of Rayleigh waves, 
the critical layer is of equilibrium type, although an unsteady diffusion layer has to 
be introduced to accommodate the cubic interaction between the oblique waves (Wu 
1993). Recently, Goldstein (1994) observed that if the magnitude of the oblique waves 
is exponentially small at the start of the parametric resonance, then following the 
parametric resonance the disturbance can evolve into a regime in which the critical 
layer becomes of non-equilibrium type and the interactions become fully coupled. He 
also shows that in this regime, the development of the disturbance is governed by 
the amplitude equations of the form (4.1) and (4.3) although the complete equations 
are not derived. In this subsection, we show that such amplitude equations and the 
associated coefficients can be readily obtained by a minor modification of the analysis 
in 92. In the following, the non-dimensionalization is based on the thickness of the 
boundary layer and the free-stream velocity. 

In the parametric resonance stage, the planar and the oblique modes all evolve on 
the slow streamwise variable (Mankbadi et al. 1993) 

(5.11) x 1 = o x ,  

where the small parameter o = ( O ' V / V ~ ) ' / ~  with w* being the dimensional frequency 
of the plane mode. The (local) Reynolds number R is scaled as R = o-'OR. In 
particular, as a result of parametric resonance, the oblique waves experience a super- 
exponential growth while the planar wave still evolves exponentially, say with the 
growth rate Kb = Kbr + ilcbi. 

Goldstein (1994) observes that the critical layer dynamics of the oblique waves 
becomes non-equilibrium in nature when 

X' = O(KL' logo-') . (5.12) 

He shows that when x1 is specified as above, bat (xl - K ; ~  logo-') >> CT, there exists 
an intermediate regime in which the amplitude of the oblique waves takes the WKBJ 
form. Moreover, he shows that if the oblique waves have an appropriate magnitude 
at the start of the parametric resonance, they can produce a feedback effect on the 
planar mode when (XI - K;' logo-') = O(a). In this final stage, all the modes evolve 
on the faster spatial scale 

4 

21 = CF'(X1 - Kb,l log o-')/a , (5.13) 

where C is the (scaled) phase velocity of the disturbance. The flow is then described by 
a structure consisting of four layers: the main layer, the potential layer, the Tollmien 
layer and the critical layer, which now is non-equilibrium as well as viscous. The 
viscous Stokes layer adjacent to the wall now can be ignored because its contribution 
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is a higher-order effect. In the main part of the boundary layer, the vertical velocity 
of the disturbance is 

v = 6oA(2l)uleid cos pZ + .xrB(21)e2i"Xc& + C.C. + . . . , (5.14) 

where 6 = o7 and E = o9 as identified by Goldstein (1994). Here for convenience, we 
have defined 

x = oa(x - oct) , z = opz . 
Other components can be expanded in a similar way. The solution in other layers 
takes a different form, but outside the critical layer the flow is linear up to the order 
of our interest, and the procedure for seeking the solution is basically the same as 
that in Bodonyi & Smith (1981). Matching the solution in the main layer with that 
in the potential and the Tollmien layers leads to 

1 dA 
= c(c+ - C-) , 

dXl 
i(cos 8 + sec @- (5.15) 

(5.16) 

Since nonlinear interactions within the critical layer are exactly the same as described 
in $3, the jumps (c+ - c-)  and (C+ - C - )  are given by the nonlinear parts of (3.74) 
and (3.114) (with bj = 2 )  respectively; the linear parts do not arise because the small 
curvature of the basic-flow profile at the critical level can produce jumps only at 
higher orders. Substituting such (c+ - c-) and (C+ - C - )  into (5.15) and (5.16), we 
obtain the amplitude equations of the form (4.1) and (4.3) but without the linear 
terms. The associated coefficients are 

(5.17) 

(5.18) 

where 1 is the shear of the basic flow at the wall. The parameter s in the viscous 
kernels is now defined by 

s = fa2;22R-1 . (5.19) 

Goldstein (1994) shows that the appropriate initial conditions follow from the 

~ ( 2 , )  + aoe'osil , ~ ( 2 ~ )  + 1 , (5.20) 

where 2, is a real parameter representing the initial amplitude of the oblique modes, 
and h0 is a real constant determined by 

asymptotic behaviour of the solution in the WKBJ stage, namely, as 2l + -a, 

Therefore through the WKBJ and the parametric-resonance stages, the solution 
matches to the linear regime upstream; for details concerning the match between 
different stages, see Goldstein (1994). 
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FIGURE 1. lnlAl us. 2 in the parametric-resonance regime (XO = 0): (a) 1 = 0 (inviscid limit); 
(b)  I = 5 ;  (c) 1 = 20; ( d )  1 = 120. The parameters are CI = 0.4 and cpo = 0. 

6. Study of the amplitude equations 
6.1. Finite-time singularity structure 

In the inviscid limit, solutions of (4.8) and (4.9) develop a finite-time singularity of 
the form (Goldstein & Lee 1992; Wu 1992) 

where ao, bo are complex numbers and CT is a real number. The parameters CT, a0 and 
t, can be determined as described in Wu (1992). Although the above singularity is 
identified for the inviscid case, substitution of (6.1) into (4.8) and (4.9) shows that the 
structure is unaltered by viscous effects. The time at which the singularity occurs is 
delayed by viscosity, as our numerical results will show. 

6.2. Numerical study of the amplitude equations 
We integrate the (rescaled) amplitude equations (4.8) and (4.9) numerically. The 
finite-difference scheme that we use is the Adams-Moulton (implicit) method with 
sixth-order accuracy. While the kernels K,(<, q) ,  K b ( < ,  q,  c ) ,  etc. are rather complicated, 
they can be readily evaluated numerically using the Trapezoidal rule. Since in the 
viscous case these kernels decay exponentially as 5, q and c tend to infinity, they are 
assigned a zero value when the arguments become sufficiently large. This can speed 
up the computation but without affecting the accuracy. 

As in Wu et al. (1993), the integrals over the infinite domains (see (4.8), (4.9)) are 
approximated by those over large but finite domains. The sizes of the domains are 
determined by trial and error. 

We first study the special case, i.e. the parametric resonance governed by (4.14) and 
(4.15). The coefficients that we use are those calculated for the oscillatory Stokes layer 
for a = 0.4. The results are shown in figure 1. It is seen that the amplitude of the 
oblique modes quickly increases due to the parametric resonance. The viscosity has a 
stabilizing effect in that it acts to inhibit the growth. However, it does not alter the 
overall trend. The massive amplification that the oblique modes experience during 
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FIGURE 2. (a) lnlAl and (b)  lnlBl us. 7 for CI = 0.6 and I = 0,5,20,80. Solid lines: numerical 
solutions; dotted lines: local asymptotic solutions (6.1). 
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the parametric-resonance stage can soon lead to the fully coupled stage even though 
their initial magnitude is small. 

The fully coupled amplitude equations (4.8) and (4.9) are then solved. In all the 
calculations presented below, we chose qp~ = 0 and xo = 0.1. This size of xo is chosen 
so that the development of the amplitudes can clearly reveal the linear, the parametric- 
resonance and the fully interactive stages. If xo is too large, the parametric-resonance 
stage may be bypassed because the fully-interactive stage follows directly the linear 
stage (Wu 1992). On the other hand if xo is too small, then we have to march the 
equations forward for a considerable time before entering the final stage and the 
computation hence becomes excessive. Of course if a quantitative comparison is to 
be performed, then xo, which represents the relative magnitude of the oblique waves 
to that of the planar mode, must be determined by experimental condition. 

The result shown in figures 2(a) and 2(b) is for a = 0.6. As illustrated, the solutions 
develop a singularity within a finite time. The viscosity effect is to delay the time at 
which the singularity occurs. We note that for a = 0.6, C g~zs-~’’ > 0. For this case, if 
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FIGURE 3. Stages that the disturbance evolves through: (a) lnlAl us. t ;  ( b )  lnlBl us. t. The dotted lines 
represent the linear solutions, and the dashed line represents the parametric-resonance solution. 
The parameters are CI = 0.6, 1 = 20. 

- 

the amplitude A is decoupled from the amplitude B by removing the quadratic term, 
i.e. if the interaction involves only a pair of oblique waves, Wu et al. (1993) found 
that the singularity in A always occurs no matter how large the (scaled) viscosity 
is. It seems reasonable to expect that this is still true with the quadratic term being 
included in the present situation of resonant-triad interaction. 

In order to follow the evolution of the disturbance closely, in figure 3, we plot 
the amplitudes of the planar and the oblique modes together. Four distinct regimes 
can be identified. Up to L is the linear stage where the modes evolve independently 
and all grow exponentially. The parametric-resonance stage starts from L. This is 
characterized by the fact that the quadratic resonance begins to affect the development 
of the oblique modes. The planar mode still follows linear theory up to PI. While the 
parametric resonance ultimately enhances the growth of the oblique modes, initially 
it can cause the oblique modes to decay or to evolve at a rate smaller than the linear 
growth rate, depending on the parameters cpo and g l l .  Starting from P I ,  the oblique 
modes attain a sufficiently large amplitude to produce a feedback effect on the planar 
mode, causing the latter to deviate from the exponential growth. However up to P2, 

such a deviation is not felt by the oblique modes, which continue to evolve as if the 
plane mode were growing exponentially. This behaviour is understandable because 
the growth rate of the oblique modes depends on the whole history rather than on 
the instantaneous amplitude so that the deviation of the planar mode from the linear 
theory in such a finite time (between PI and P2) cannot outweigh the accumulated 
history effect. To indicate its main feature, it seems appropriate to refer the regime 
between PI and P2 as the extended parametric-resonance stage. It is interesting to note 
that it is in this stage rather than in the pure parametric-resonance stage that the 
oblique modes are substantially amplified by quadratic resonance. We also note that 
between P1 and P2, the feedback effect on the planar mode is mainly produced by the 
cubic terms while the contribution from the quartic term is negligible, as in the inviscid 
case studied by Goldstein & Lee (1992). Starting from P2, the self-interactions of the 
oblique modes come into play to induce a finite-time singularity, which is transmitted 
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FIGURE 4. (a )  lnlAl and (b )  lnlBl us. 7 for LY = 0.4 and I. = 0,5,20,100,250. Solid lines: numerical 
solutions; dotted lines: local asymptotic solutions (6.1). The dashed line represents the solution 
when the quadratic term is excluded from (4.8). 

- 

back to the planar mode through the feedback terms, leading to the formation of 
singularity in the amplitude B. 

The next case that we examined is for CI = 0.4. Figures 4(a) and 4(b) show that the 
finite-time singularity again occurs. For this wavenumber, Cg12s-4/3 < 0; so if the 
quadratic term is removed from (4.8), the amplitude A decays exponentially when the 
viscosity is sufficiently large (Wu et al. 1993) as indicated by the dashed line in figure 
4(a) which corresponds to 1 = 100. However, with the presence of the quadratic 
term, the solution terminates at a finite-time singularity at the same size of 1. Further 
increasing the size of 2, we find that the singularity persists. It appears that for 
the fully coupled resonant-triad interaction, viscosity cannot eliminate the singularity 
because of the participation of the quadratic interaction. The viscous effect is to delay 
the time at which the singularity occurs. 
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(A 4) 

In the inviscid limit (1 = 0), the functions ku(5, q,  0, etc. simplify to 

kucr, r ,  C) = ;t2(25 + q )  + ; sin26 [-(25 + q)(25 + 4q + 3C)C + q(5  + q)(45 + q)] 
+ 4sin4QC-C3 + ( 5  - q)C2 + i"(5 + 2q)il , (A 5 )  

&(5, q, C) = it(5 + 2q) + sin2Q(5 + r)(C - 5 )  - sin46 [3C2 + 2(5 + 2q)CJ . (A 8) 

Appendix B 
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